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Abstract
Inviscid regularization modeling of turbulent flow is investigated.
Homogeneous, isotropic, decaying turbulence is simulated at a range of
filter widths. A coarse-graining of turbulent flow arises from the direct
regularization of the convective nonlinearity in the Navier–Stokes equations.
The regularization is translated into its corresponding sub-filter model to
close the equations for large-eddy simulation (LES). The accuracy with which
primary turbulent flow features are captured by this modeling is investigated
for the Leray regularization, the Navier–Stokes-α formulation (NS-α), the
simplified Bardina model and a modified Leray approach. On a PDE
level, each regularization principle is known to possess a unique, strong
solution with known regularity properties. When used as turbulence closure
for numerical simulations, significant differences between these models are
observed. Through a comparison with direct numerical simulation (DNS)
results, a detailed assessment of these regularization principles is made. The
regularization models retain much of the small-scale variability in the solution.
The smaller resolved scales are dominated by the specific sub-filter model
adopted. We find that the Leray model is in general closest to the filtered DNS
results, the modified Leray model is found least accurate and the simplified
Bardina and NS-α models are in between, as far as accuracy is concerned. This
rough ordering is based on the energy decay, the Taylor Reynolds number and
the velocity skewness, and on detailed characteristics of the energy dynamics,
including spectra of the energy, the energy transfer and the transfer power. At
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filter widths up to about 10% of the computational domain-size, the Leray
and NS-α predictions were found to correlate well with the filtered DNS
data. Each of the regularization models underestimates the energy decay rate
and overestimates the tail of the energy spectrum. The correspondence with
unfiltered DNS spectra was observed often to be closer than with filtered DNS
for several of the regularization models.

PACS numbers: 47.27.ep, 47.27.Gs
Mathematics Subject Classification: 76F05, 76F65, 81T80

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Turbulence arises in a variety of flows in nature and technology. Although as a rule a strict
definition is not provided in the literature, turbulence is associated with the presence of a broad
dynamic range of the length- and time-scales in a flow [1, 2]. Through nonlinear interactions
among these scales, a complex multiscale dynamics results [3]. For incompressible fluids,
such as water or air at low speeds, this is governed by the Navier–Stokes equations. Under
realistic flow conditions, the range of relevant dynamical scales is too large to be explicitly and
completely resolved numerically. A pragmatic answer to cope with this situation is obtained
by restricting computational models to resolving only the primary features of the flow [4, 5].
The latter requires considerably reduced computational effort and hence these simulations at
least become feasible. However, the main issue is not about mere feasibility, but whether or not
the primary flow features can be captured accurately when such a coarsened flow description
is considered.

In large-eddy simulation, a coarsened representation of a turbulent flow is formulated
based on the application of an explicit spatial filter to the Navier–Stokes equations [6]. Such
an explicit filtering introduces the filter width � as a new length-scale, which provides external
control over the effective dynamic range of the smoothed flow. At the same time, the filtering
of the convective nonlinearity introduces an explicit closure problem. As witnessed in the LES
literature, this closure problem has triggered considerable inventiveness in the construction of
the so-called sub-filter models, which approximate the dynamic consequences of the small-
scales for the evolution of the resolved large scales. Much work has been devoted to assessing
such sub-filter models, many of which are loosely motivated by an argumentation based on
statistical properties of a turbulent flow. Good examples are eddy-viscosity models such as
Smagorinsky’s model [7], or scale-similarity models such as Bardina’s model [8, 9]. An
alternative route to sub-filter modeling is achieved by adhering to the transport structure of the
filtered Navier–Stokes equations. Rather than closing the filtered equations by introducing a
dissipative flux term, the nature of the closure problem can be used as a point of departure [10].
An important class of sub-filter models obtained in this way is the ‘regularization’ model.
In these models the filtered convective fluxes in the Navier–Stokes equations are directly
modified, thereby retaining much of the mathematical properties of the filtered equations. A
recent example of such an approach to sub-filter modeling was motivated by the seminal paper
by Leray [11] and applied to turbulent mixing in [12, 13] and turbulence closure [14].

In this paper we assess the quality of sub-filter models obtained on the basis of
regularization principles. We include the Leray principle [11, 12, 14], the NS-α formulation
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[15–20], the simplified Bardina model [21–23] and a recent proposal based on a modified
Leray principle [24]. These inviscid, i.e., non-hyper-viscous, regularization principles are
appealing as the corresponding system of nonlinear partial differential equations is known to
possess a unique solution with known regularity [11, 14, 17, 18, 21–24]. These models were
shown to predict large scales of ensemble averages of turbulent flows in channels and pipes at
very large Reynolds numbers in close agreement with experimental data [15, 16, 25] (see also
[26] for the Clark-α model). However, that by itself is no guarantee for accurate capturing
of the primary turbulent flow features in actual large-eddy simulation models. Therefore,
we investigate these regularization principles in the large-eddy simulations of homogeneous,
isotropic, decaying turbulence. Comparison with data from a direct numerical simulation of
the Navier–Stokes equations provides a conclusive opportunity for assessing the suitability
of a regularization principle as the ‘generator’ of a sub-filter model. We will show that
remarkably large differences occur between flow predictions obtained on the basis of the
above regularization principles, despite the fact that these formulations share a common
perspective on the smoothing of small scales. We analyze this on the basis of a large number
of large-eddy simulations in which the spatial resolution N = 1/h, with h the mesh-spacing,
and the filter width � were systematically varied.

The purpose of this paper is to investigate to what extent the global regularity of solutions
to certain mollifications/regularizations of the three-dimensional Navier–Stokes equations is
related to the accurate capturing of the spatially filtered flow representation. The effect of
the regularization models on the large energetic scales in a turbulent flow is quite limited.
However, their action on the small-scale features in a flow differs considerably, particularly at
large filter widths. While this combines into a quite similar capturing of mean flow properties,
fluctuating properties and the spectral composition of the grid-independent numerical solution
are found to differ considerably. We compare the four regularization models, mentioned above,
with filtered DNS data for homogeneous, isotropic, decaying turbulence. Sufficiently small
scales in turbulent flows are often postulated to possess ‘universal properties’. In particular,
it is assumed that such small scales display dynamical behavior that is quite independent of
the large-scale flow that carries these small scales. This motivates the study of homogeneous,
isotropic, decaying turbulence as a canonical flow-type in which explicit sub-filter models
should be tested. We consider this flow at a variety of spatial resolutions and filter widths to
investigate the flow predictions under the conditions of marginal resolution as well as in the
case of approximate grid-independence.

The organization of this paper is as follows. In section 2, we introduce the direct
regularization modeling of turbulence in the context of the filtering approach to large-eddy
simulation. Section 3 is devoted to a description of the numerical method and the simulation of
homogeneous, isotropic, decaying turbulence. Statistical properties of regularized turbulence
are presented in section 4, while a detailed discussion of the energy dynamics is provided in
section 5. Concluding remarks are reported in section 6.

2. Regularization modeling of turbulence

In this section, we review the filtering approach to large-eddy simulation and connect this
to regularization modeling. We present the regularized Navier–Stokes equations in detail in
case the Leray, the NS-α, the simplified Bardina and the modified Leray regularizations are
combined with explicit Helmholtz filtering, i.e., a spatial convolution with a Bessel potential
[27], which is the Green function of the Helmholtz operator.
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The flow of a constant density fluid such as water is governed by the Navier–Stokes
equations subject to the constraint of incompressibility. Mathematically, the conservation of
mass and momentum can be expressed as

∂juj = 0, (1)

∂tui + ∂j (ujui) + ∂ip − 1

Re
∂jjui = 0, i = 1, 2, 3, (2)

where ui denotes the velocity in the xi direction and p is the pressure. Partial derivatives
with respect to the time t and spatial coordinate xi are denoted by ∂t and ∂i , respectively.
The Reynolds number Re measures the relative importance of the convective flux ∂j (ujui)

and the viscous flux ∂jjui . It is defined as Re = (Ur�r)/ν, where Ur, �r and ν denote the
reference velocity, length-scale and kinematic viscosity, respectively, that were adopted to
nondimensionalize the equations.

The solution to (1) and (2) has a dynamic range that extends to the flow features of the
order of the Kolmogorov dissipation scale η [29, 30]. For homogeneous, isotropic turbulence,
η ∼ Re−3/4. This scaling law implies that flows at high Reynolds numbers require very
small mesh-spacings h � O(η) in order to be properly resolved numerically. In realistic
cases, the Reynolds number is so high that this requirement cannot be met with currently
available computing infrastructure and resources. As an example, Reynolds numbers as high
as Re = 108 are associated with flows in the atmosphere, while Re = 106–107 arises in the
most applications of commercial aircraft. Even larger Reynolds numbers are connected to
flow in the ocean and in relation to the evolution of structures in the universe.

Various applications or scientific questions do not require accurate predictions of all
dynamic scales up to η. In fact, most of the energy contained in a flow is represented by its
primary flow features. For various problems, it suffices to develop computational models that
capture the larger scales in a flow only. How this general observation should be translated into
a specific computational modeling is a matter of ongoing research for which only rather crude
suggestions have been made. As a general ‘rule of thumb’, proposed by Pope [1], capturing of
about 80% of the total kinetic energy should yield a sufficiently accurate description of mean
flow profiles. Alternatively, it was found that filter widths up to about 5% of a typical large scale
of the flow field, yield a good correspondence with filtered DNS findings [15, 16, 19, 31, 32].
In doing so, one may take the liberty to sacrifice reliable predictions of the smallest scales,
provided there is no ‘contamination’ of such small-scale errors toward the larger scales. This
is a central premise of coarsened flow descriptions [4].

An external control over the dynamic range of the computational model can be obtained
by the spatial filtering of (1) and (2). This is the basis of the filtering approach to large-eddy
simulation [6]. As a first step, one introduces a convolution filter L. In one spatial dimension
this is conveniently expressed as

u(x, t) = L(u) =
∫ ∞

−∞
G(x − ξ)u(ξ, t) dξ, (3)

where G denotes the filter-kernel and u the filtered solution obtained from the unfiltered
solution u. This kernel is assumed to be characterized by a filter width �, e.g., defined
in terms of its second moment [33]. Various filter-kernels have been suggested in the
literature. In this paper, we will adopt the Helmholtz filter, based on the Bessel potential kernel
[15–19, 27]. This filter is defined as L = H−1, where the Helmholtz operator H is given by

u = H(u) = (1 − α2∂xx)u. (4)

Here we introduced the ‘Helmholtz-length’ α, which defines the effective width of this filter.
Comparing (4) to Taylor expansions of the effect of popular second-order filters, such as
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the top-hat and the Gaussian filters, it was shown in [28] that α2 ≈ �2/24. Thus, the
Helmholtz-length is about 1/5 of the filter width of second-order filters.

The action of the Helmholtz filter on u = e2π ikx , with i2 = −1 and k ∈ Z, can be written
as u = L(u) = H(kα) e2π ikx , where the Fourier transform of the Helmholtz kernel is given by

H(kα) = 1

1 + 4π2(kα)2
. (5)

Correspondingly, the application of the Helmholtz filter to an arbitrary solution u can be
expressed most concisely in terms of its effect on the Fourier series expansion of u. Specifically,
with u represented by Fourier coefficients {ck} we may write

u(x, t) = H−1

( ∞∑
k=−∞

cke2π ikx

)
=

∞∑
k=−∞

H(kα)ck e2π ikx . (6)

This illustrates the attenuation of each individual Fourier component as a result of Helmholtz
filtering. Scales for which kα � 1 are effectively removed from the solution. Specifically,
if we define the ‘effective’ cut-off at H(kα) = 1/2 [34], then solution-components with
kα � 1/(2π) can be interpreted as ‘resolved’ scales, while the smaller scales are ‘sub-filter’
scales. In three dimensions we adopt the Helmholtz filter with

H(kα) = 1

1 + 4π2α2
(
k2

1 + k2
2 + k2

3

) , (7)

where k = [k1, k2, k3] is the vector of wavenumbers.
The application of any convolution filter to the governing equations (1) and (2) can be

expressed in terms of the ‘LES template’ as

∂juj = 0, (8)

∂tui + ∂j (ujui) + ∂ip − 1

Re
∂jjui = −∂j τij , (9)

where we observe the Navier–Stokes equations on the left-hand side in terms of the filtered
velocity and pressure, and the divergence of the so-called turbulent stress tensor τij on the
right-hand side. The turbulent stress tensor is given by

τij = ujui − ujui = L(ujui) − L(uj )L(ui) = [L,
ij ](u). (10)

This tensor arises as a commutator of the filter operation and the quadratic nonlinearity
in the convective fluxes, where [A,B] = A ◦ B − B ◦ A and 
ij (u) = uiuj . The
commutator properties of τij are in a number of ways similar to those of the Poisson bracket in
classical mechanics, which provides the basis for dynamic sub-filter modeling in which model
parameters follow from a solution-adaptive least-squares optimization [35, 36].

The filtered equations are not closed as the evaluation of the turbulent stress tensor cannot
be performed on the basis of the filtered solution alone. The central challenge in large-eddy
modeling is to approximate ∂j τij in terms of a model operating on u. Various proposals have
been put forward in the literature. For later convenience we recall the well-known Bardina
similarity model [9], given by

mB
ij = [L,
ij ](u) = ujui − ujui. (11)

We observe that in this model the definition of the turbulent stress tensor in (10) is applied
to the filtered solution, to obtain closure. A closely related modification of Bardina’s model
[8, 9] arises as

mmB
ij = ujui − ujui (12)
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which was proposed and studied in [22, 23] and recently further analyzed in [21].
Generalizations that include an approximate inversion of the spatial filter were put forward in
[34, 37]. A comprehensive discussion of models based on (approximate) deconvolution may
be found in [23].

An alternative closure approach for the turbulent stress tensor is obtained by the so-called
direct regularization of the convective flux. The models that will be considered in this paper
can concisely be formulated, starting from the modified momentum equation

∂tui + ∂j (vjwi) + ∂ip − 1

Re
∂jjui = 0. (13)

This equation governs the evolution of the velocity field u as a result of standard viscous
fluxes and pressure gradient, but with an extended definition of the convective fluxes. We
will refer to v as the ‘convecting’ velocity field and w as the ‘convected’ velocity field. As
an example, if we adopt vi = wi = ui for i = 1, 2, 3, we re-obtain the standard momentum
equations. Different regularization models correspond to specific choices for v and w. The
simplest regularization models that we consider here are

Leray : vi = ui;wi = ui, (14)

Modified Leray: v = ui;wi = ui, (15)

Modified Bardina: vi = ui;wi = ui. (16)

The Leray regularization follows from the seminal paper of Leray [11], used in the context of
large-eddy simulation in [12, 14]. The modified Leray regularization was proposed in [24] and
the simplified Bardina model was put forward in [21–23]. Each of these modifications of the
convective fluxes induces a particular sub-filter model to be used in the large-eddy template.
If we filter (13) then we obtain

∂tui + ∂j (ujui) + ∂ip − 1

Re
∂jjui = −∂jm

R
ij , (17)

where the regularization model tensors mR
ij are given by

mR
ij = vjwi − ujui. (18)

In detail, we hence obtain

Leray : mL
ij = ujui − ujui, (19)

Modified Leray: mmL
ij = ujui − ujui, (20)

Modified Bardina: mmB
ij = ujui − ujui. (21)

The regularization models listed above are appealing from a mathematical point of view. For
each of these models, the rigorous existence, uniqueness and regularity of the solution to the
modeled equations have been established [11, 21–24].

Whenever the unfiltered solution u appears in one of the regularization model tensors,
we imply that an approximate inversion of the Helmholtz filter is used. Specifically, u
is replaced by L(u) where L denotes the approximate inverse of L. Various approximate
inversion procedures have been suggested in the literature. A polynomial inversion of order n
is obtained by requiring L(L(xk)) = xk for k = 0, . . . , n [37]. A related procedure is known
as the approximate deconvolution method (ADM) [34]. These approximation procedures
are applicable for general graded filters [38]. Here, we consider the Helmholtz filter, which
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can be inverted exactly at each computational resolution. Since the flow simulations adopt a
(pseudo-)spectral formulation the inversion of the Helmholtz filter is straightforward. In fact,
if we start from a Fourier series for ui with coefficients {ck} then the reconstructed solution that
enters (19) or (20) has Fourier coefficients {ck/H(k�)}. Thus, multiplication with a mode-
dependent factor 1/H(k�) provides a simple implementation of the inverse of the Helmholtz
filter.

An extended regularization principle, known as the NS-α model, may be obtained under
certain conditions (see [17, 39]) by starting from the following Kelvin theorem:

d

dt

(∮
�(u)

uidxi

)
− 1

Re

∮
�(u)

∂jjui dxi = 0, (22)

where �(u) is a closed fluid loop moving with the Eulerian velocity u. The unfiltered Navier–
Stokes equations may be derived from (22) [4, 17]. This provides some of the inspiration
for an alternative regularization principle for the Navier–Stokes turbulence [17]. In fact,
the so-called NS-α regularization principle was originally proposed on the basis of Taylor’s
hypothesis of frozen-in turbulence in a Lagrangian averaging framework [40, 41]. In the
NS-α model, the fluid loop is considered to move with the smoothed transport velocity u,
although the circulation velocity is still the unsmoothed velocity, u. That is, in (22) we replace
�(u) by �(u); so the material loop � moves with the filtered transport velocity. From this
filtered Kelvin principle, we may obtain the Euler–Poincaré equations governing the smoothed
solenoidal fluid dynamics [41], i.e., ∂juj = 0 and

∂tui + ∂j (ujui) + uj∂iuj + ∂ip − ∂i

(
1

2
ujuj

)
− 1

Re
∂jjui = 0. (23)

Comparison with the Leray regularization principle in (14) reveals two additional terms in
(23). These terms guarantee the regularized flow to be consistent with the modified Kelvin
circulation theorem in which �(u) → �(u).

The Euler–Poincaré equations (23) can also be rewritten in the form of the LES template.
The implied sub-filter model is given by

∂tui + ∂j (ujui) + ∂ip − 1

Re
∂jjui = −∂j (ujui − ujui) − 1

2
(uj ∂iuj − uj∂iuj ). (24)

We observe that the Leray model (19) reappears as a part of the NS-α sub-filter model on the
right-hand side of (24). This formulation is given in terms of a general filter L and its inverse.
The sub-filter model presented in (24) can be specified further in case the filter L has the
Helmholtz operator as its inverse [17]. After some rewriting, the following parameterization
for the turbulent stress tensor is obtained [28]:

mNS-α
ij = α2L(∂kui ∂kuj + ∂kui ∂juk − ∂iuk ∂juk). (25)

The first term on the right-hand side is the Helmholtz-filtered tensor-diffusivity model [42].
The second term combined with the first term, corresponds to the Leray regularization using
the Helmholtz inversion as a filter. The third term completes the NS-α model and maintains
Kelvin’s circulation theorem. The global regularity of the NS-α model was established in [18].
In addition, an estimate for the dimension of the global attractor was obtained and related to
the number of degrees of freedom in [17, 18].

In the following section, we describe the numerical method used to assess the
regularization models. We also provide a general impression of the flow modifications that
arise from the use of the different sub-filter models. The consequences of these modifications
for statistical flow properties will be considered in section 4.
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3. The numerical simulation of decaying homogeneous isotropic turbulence

We use a pseudo-spectral discretization combined with explicit time-stepping as described in
section 3.1. Impressions of the large-eddy solutions obtained with the regularization models
are collected in section 3.2.

3.1. The pseudo-spectral discretization of regularized incompressible flow

We will specify the pseudo-spectral discretization of the Navier–Stokes equations first and
then describe the extensions required to treat the various regularization models introduced
above. We use a numerical method in which no explicit Poisson system for the pressure needs
to be solved. Closely following [3, 43] we express the Navier–Stokes equations in vector
notation as

∂tu(x, t) + u(x, t) · ∇u(x, t) = −∇p(x, t) +
1

Re
∇2u(x, t). (26)

We may rewrite the nonlinear convective flux, thanks to the incompressibility condition, as

u(x, t) · ∇u(x, t) = ω(x, t) × u(x, t) + 1
2∇ |u(x, t)|2 , (27)

where ω(x, t) = ∇ × u(x, t) is the vorticity. Substituting this into (26) and introducing the
nonlinear term as W(x, t) = u(x, t) × ω(x, t), we may write(

∂t − 1

Re
∇2

)
u(x, t) = W(x, t) − ∇

(
p(x, t) +

1

2
|u(x, t)|2

)
. (28)

The flow is solved subject to periodic boundary conditions in all directions.
The system of equations (28) with incompressibility constraint ∇ · u = 0 can be easily

transformed to spectral space. Each of the velocity components uα(x, t) is expanded in terms
of Fourier series dependent on the wavevector k:

uα(x, t) =
∑

k

uα(k, t) eik·x. (29)

Here, and in the sequel we use k to denote the wavevector. Note that this differs from its
use in (4) where it denotes the vector of integer wavenumbers. We use the same notation for
quantities in the physical and the spectral space, indicating the difference only by x or k as
variables [3]. The transformed equation has the form(

∂t +
1

Re
k2

)
u(k, t) = W(k, t) − ikF

(
p(x, t) +

1

2
|u(x, t)|2 , k

)
, (30)

where F(a(x, t), k) denotes the Fourier coefficient of the function a(x, t) corresponding to
the wavevector k:

F(a(x, t), k) = A(k, t) if a(x, t) =
∑

k

A(k, t) eik·x. (31)

Likewise, W(k, t) denotes the kth Fourier coefficient of the nonlinearity W(x, t).
To eliminate the pressure term, and hence the need for a separate time-consuming Poisson

equation solver, (30) is multiplied by k, which corresponds to taking the divergence of (28) in
physical space. Using the continuity equation in spectral space (k · u(k, t) = 0), the pressure
term can be written as

F
(

p(x, t) +
1

2
|u(x, t)|2 , k

)
= k · W(k, t)

ik2
. (32)
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This leads to the final form of the system of equations:(
∂

∂t
+

1

Re
k2

)
u(k, t) = W(k, t) − k

k2
k · W(k, t) ≡ DW(k, t), (33)

where in the last step we introduced the projection operator D: Dαβ(k) = δαβ − kαkβ/k2,
projecting W onto the plane normal to the wavevector k. For a detailed discussion of this
approach see [3, 44].

We incorporate various models in the nonlinear term substituting W(k, t) by its modified
version W(k, t):

Leray: W(k, t) = −F((u(x, t) · ∇)u(x, t), k),

Modified Leray: W(k, t) = −F((u(x, t) · ∇)u(x, t), k),

Modified Bardina: W(k, t) = −F((u(x, t) · ∇)u(x, t), k),

NS-α: W(k, t) = −F((u(x, t) · ∇)u(x, t), k)

− F

⎛
⎝ 3∑

j=1

uj (x, t)∇uj (x, t), k

⎞
⎠ .

(34)

Hence, the modification of the Navier–Stokes equations needed to accommodate the different
regularization models involves the convective nonlinearity only. This is readily implemented
in the pseudo-spectral framework.

To solve (33) we use the fact that the diffusive terms can be computed exactly by
introducing an integrating factor ek2t/Re. In fact, we may concisely write

∂tU(k, t) = f (U(k, t)) , (35)

where

U = {
uα(k, t) ek2t/Re

}
, f = {

DαβWβ(k, t) ek2t/Re
}
. (36)

Introducing the time-step �t , so that tn = n�t , we can integrate this problem using the
four-stage compact storage Runge–Kutta method:

U(k, tn+γ ) = U(k, tn) + γ�tf(U(k, tn+ξ )) (37)

with coefficients (γ, ξ) ∈ {(1/4, 0), (1/3, 1/4), (1/2, 1/3), (1, 1/2)} in the four consecutive
stages of a time-step. The explicit final form of the discretized equations is

uα(k, tn+γ ) = uα(k, tn) e−k2γ�t/Re + γ�tDαβWβ(k, tn+ξ ) e−k2(γ−ξ)�t/Re. (38)

The method of numerical solution is pseudo-spectral, i.e., the spatial-derivative terms in
the Navier–Stokes equations are computed in spectral space, while the nonlinear terms of the
momentum equations are evaluated by back-transforming the velocities to the physical space
to perform the required products of velocities. This also applies to the nonlinear terms present
in the regularization models. There are different ways to eradicate the aliasing errors [45]. We
applied the method with two shifted grids and spherical truncation [44, 46]. With this method
the aliasing error is fully removed from the simulations, which is particularly relevant in case
large-eddy simulations at comparably coarse resolutions are considered. The de-aliasing is
done at the expense of doubling the costs of computations and memory usage. An efficient
parallel implementation was developed to simulate the turbulent flow. A detailed validation
of this code was reported in [46, 48].

3.2. Flow structures in regularized turbulence

In order to obtain a global impression of the predictions obtained with the regularization sub-
filter models, we present flow solutions in terms of typical snapshots of the velocity field. This
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allows us to roughly ascertain whether or not the instantaneous solutions ‘resemble’ the actual
filtered direct numerical simulation findings as far as turbulent flow structures are concerned.
This assessment is only quite crude and will be complemented with a quantitative analysis in
the following section.

We consider turbulence in a cubic box of side � with periodic boundary conditions.
We use N Fourier modes per coordinate direction, consistent with the assumed statistical
isotropy. The wavevector k is given by: kα = 2πnα/� for integer nα = 0,±1,±2, . . . ,

± (N/2 − 1) ,−N/2. The cut-off wavenumber is given by kmax = πN/�. The initial
condition is taken identical to [49], adopting an initial Taylor Reynolds number of Reλ = 100
and a computational Reynolds number Re ≈ 4000 based on the domain-size.

We consider the flow that is predicted by the various models at a resolution of N3 Fourier
modes, with N = 128. This corresponds to an approximately grid-independent solution [46],
in particular when the filter-parameter α � �/160, i.e., at filter widths � � �/32. The ratio
between the filter width � and the grid-spacing h is known as the sub-filter resolution, which
takes values �/h � 2–4 in order to obtain near grid-independence, a value that was also
observed in [50]. An impression of the velocity field is shown in figure 1. In the first row we
observe the degree of flow coarsening arising from the application of the Helmholtz filter to the
DNS data. This provides the point of reference with which the large-eddy simulations will be
compared. Turning to the regularization models we observe from the first column of figures at
α = �/320, i.e., � ≈ �/64, that the sub-filter models do not contribute much to the total flux
and the results can hardly be distinguished from the filtered DNS data. Turning to the second
column at α = �/160, we note that the Leray prediction is somewhat coarsened, corresponding
to the wider filter width. This is also observed in the NS-α model, albeit with a slight tendency
to over-predict the small-scale variability of the solution, compared to the filtered DNS. This
tendency is even stronger in the modified Leray model in which we may already appreciate
from this simple inspection that the solution develops too many small scales. For α = �/80
these trends are expressed more strongly—we observe that the Leray prediction resembles the
filtered DNS results quite closely, NS-α further over-represents small-scale variability and the
modified Leray model is seen to yield very poor correspondence with the filtered DNS at this
filter width. This may also be noticed from the last column of figures in which we observe,
in particular, a complete disappearance of correlation between the modified Leray model and
the filtered DNS. At this large filter width, both the Leray and NS-α models are still capturing
the large-scale impression of the filtered solution. A similar general trend was observed in
relation to the prediction of vorticity, although any (slight) over-prediction of small scales in
the velocity has a much more pronounced influence on vorticity.

In the following section, we analyze some statistical properties of homogeneous turbulence
in more detail, to establish the accuracy with which regularization models represent physical
properties of the flow. The overestimation of the smaller scales, compared to the filtered DNS
results, will prove to be an important limitation on the quality of predictions of the models,
particularly at larger filter widths.

4. Statistical properties of regularized homogeneous turbulence

In this section we consider the prediction of three key statistical properties of homogeneous
decaying isotropic turbulence as obtained with the different regularization models. First, we
recall the main elements of energy dynamics in turbulent flow in section 4.1. Then we present
the simulation results in section 4.2. We include a discussion of the reference direct numerical
simulation and quantify the effect of Helmholtz filtering. Subsequently, we turn to the accuracy
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(a) (b) (c) (d)
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(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 1. Instantaneous velocity field at t = 0.1, showing the velocity component in the x1-
direction. Regions with a positive u1 are colored red while the negative u1 is shown in blue. We
show results at N3 grid points with N = 512 for the direct numerical simulation and N = 128 for
the large-eddy simulations. We adopt the Helmholtz filter. Results from the filtered DNS (a, b, c,
d), Leray (e, f, g, h), NS-α (i, j, k, l) and the modified Leray model (m, n, o, p) at α = �/320 (a, e,
i, m), α = �/160 (b, f, j, n), α = �/80 (c, g, k, o) and α = �/40 (d, h, l, p) are shown.

with which the regularization models predict the primary features of homogeneous, isotropic
turbulence at various filter widths and spatial resolutions.

4.1. Elements of energy dynamics

The energy dynamics in a turbulent flow is governed by the dissipation and transfer of energy.
Changing to index notation we may rewrite (33) as(

∂t +
1

Re
k2

)
uα(k, t) = Dαβ(k)Wβ(k, t) ≡ �α(k, t). (39)
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Multiplying this set of equations by the complex-conjugate of the Fourier velocity component
u∗

α(k, t) and summing, we obtain the energy equation:(
∂t + 2

1

Re
k2

)
E(k, t) = u∗

α(k, t)�α(k, t), (40)

where E(k, t) = 1
2 |u(k, t)|2 defines the kinetic energy distribution in spectral space.

Introducing the notation for the rate of energy transfer T (k, t) = u∗
α(k, t)�α(k, t) and the

dissipation rate εd(k, t) = 2k2E(k, t)/Re, we can simplify this as

∂tE(k, t) = −εd(k, t) + T (k, t). (41)

Since we deal with homogeneous, isotropic turbulence, the shell-averaged energy distribution
E(k, t) and transfer rate T (k, t) will be considered. In addition, the total kinetic energy E
and total dissipation rate ε(t) will be studied. These are obtained by integrating E(k, t) and
εd(k, t) over k [46]. In addition, we will consider the power spectrum 
, which is obtained
as


(k, t) = −
∫ k

0
T (κ, t) dκ. (42)

If a regularization model is analyzed we focus on the dominant contribution to T (k, t) only,
i.e., the contributions T (k, t) = u∗

α(k, t)�α(k, t). Together, these quantities characterize in
some detail the large- and small-scale contributions to the dynamics of the kinetic energy.
These provide a good basis for the assessment of the regularization models.

In this paper, we compare the energy dynamics of the regularization models to that
associated with the filtered DNS solution. We consider the dynamics of the resolved energy,
i.e., the energy based on the filtered representation |uα(k, t)|. This method of comparison is
directly motivated by the large-eddy simulation framework [4, 5]. Alternatively, one could
consider the explicit energy balances associated with the regularization models. This involves
slight re-definitions of the quantity referred to as the kinetic energy, and differs from model to
model. At small values of the filter width, the differences can be neglected, but for wider filters
these re-interpretations of the ‘kinetic energy’ do show some differences with the resolved
kinetic energy. This alternative comparison was studied in [47].

In the assessment of the regularization models we also include the evolution of two flow
properties that are closely related to the energy dynamics. First, the Taylor Reynolds number
Reλ defined as

Reλ(t) = Re urms(t)λ(t) (43)

is considered. Here,

urms(t) =
√

2E(t)/3 (44)

denotes the root-mean-square velocity fluctuation and λ is the Taylor microscale given by

λ(t) =
[

5E(t)

/∫ kmax

0
k2E(k, t) dk

]1/2

=
√

〈u2(x, t)〉√
〈(∂1u(x, t))2〉

(45)

in which kmax is the largest wavenumber in the computation and 〈·〉 denotes volume averaging
over the entire flow domain. Moreover, to scrutinize the quality with which the smaller scales
are represented, the skewness is included:

S(t) = 2

35

(
λ(t)

urms(t)

)3 ∫ kmax

0
k2T (k, t) dk = 〈(∂1u(x, t))3〉

〈(∂1u(x, t))2〉3/2
(46)
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in terms of the shell-averaged energy-transfer spectrum T (k, t). The flow properties E, Reλ

and S will next be used to illustrate the accuracy with which different parts of the dynamic
range of the turbulent flow are predicted. The resolved kinetic energy is strongly influenced
by the larger scales in the flow, whereas Reλ and S depend on the components of the velocity
derivatives and hence characterize the accuracy with which smaller scales are captured.

4.2. Comparison of regularization LES with filtered DNS

In this subsection, we first consider the reference direct numerical simulation and the effect
of Helmholtz filtering. Then we turn to a detailed comparison of predictions based on
regularization models with filtered DNS.

4.2.1. Grid-independence of direct numerical simulation. In the following, we will
validate predictions of the regularization models against data obtained from direct numerical
simulations. Therefore, it is of importance to establish the quality of the DNS through a grid-
convergence study. This also gives basic information on the effect of coarse spatial resolution
in the large-eddy simulations that will be presented momentarily. In figure 2, we show the
convergence of (E, Reλ, S). For each of these three flow properties a clear convergence is
observed, approximating a truly grid-independent solution. We observe significant deviations
from the grid-independent solution at coarse resolutions N = 32 and 64. Conversely, E and
Reλ are very well approximated at N = 128, while the velocity skewness S requires at least
N = 256 to be captured with high accuracy.

4.2.2. The effect of Helmholtz filtering. To assess the quality of the large-eddy predictions,
it is required to compare results against filtered direct numerical simulations. We compare the
effect of filtering at a range of Helmholtz-lengths, i.e., α in (4) varies from �/320 to �/10. This
corresponds to effective filter widths � = �/64, . . . , �/2. The strongest filtering at � ≈ �/2
was deliberately chosen well inside the largest flow scales to also assess the limitations of
regularization models in the case of so-called VLES (very-large-eddy simulations [1]).

In figure 3 we compiled the filtered DNS data. The procedure to obtain these results is
as follows: (i) filter the DNS solution obtained at N = 512 with a Helmholtz filter using
the parameter α, (ii) inject the filtered solution onto a grid at N = 128 and (iii) on this grid,
evaluate the corresponding flow property. The choice for evaluating the filtered solution at
N = 128 was made since at this resolution all the so-called sub-filter resolutions r = �/h � 2.
Values of r � 2 correspond (quite) closely to grid-independent LES [50], which serves as an
important point of reference for assessing the quality of the regularization models without any
contamination from numerics that could arise at coarse resolutions [49, 51, 52].

We clearly observe in figure 3 the strong influence of filtering on the solution. An increase
in the filter width implies a monotonous reduction of the decay of the turbulent kinetic energy
and the skewness, consistent with the stronger attenuation of more of the smaller scales. At
sufficiently small filter widths, this monotonous trend also applies to the Taylor Reynolds
number. In that case, we observe Reλ to increase with an increasing filter width, which is due
to the fact that the increase in the Taylor micro-scale is stronger with an increasing filter width
than the decrease of the root-mean-square fluctuations of the velocity urms. However, at very
large filter widths we note the reverse trend. Once the filter width becomes of the size of the
largest flow structures, the kinetic energy, and hence urms (cf (44)), decrease more rapidly than
can be compensated by an increase in λ. In total, this implies lower Taylor Reynolds numbers
at very large filter widths.
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Figure 2. Evolution of the total kinetic energy E , (a) the Taylor Reynolds number Reλ and
(b) the skewness S, (c) quantifying the convergence toward DNS at resolutions N3 with N =
32 (◦), N = 64 (), N = 128 (dash-dot), N = 256 (dash) and N = 512 (solid).

We proceed with the actual assessment of the regularization models. The different
simulations were initialized as follows. The initial field used for DNS at N = 512 was filtered
with the Helmholtz filter at the α-value selected for the LES, and subsequently injected onto
the chosen LES grid. This assures that at t = 0 the flow properties evaluated from any of
the large-eddy simulations and the filtered, injected DNS are identical. Various values of α

and various spatial resolutions were included in this study. We distinguish between results
obtained at sufficiently high sub-filter resolution �/h, from coarsely resolved simulations.
Grid-independent solutions allow us to assess how well the proposed model captures the
primary flow features. This requires high resolution, for which we adopt simulations at
N = 128, thereby guaranteeing the �/h � 2 for all simulations considered. Next to this
‘academic LES testing’ of the sub-filter modeling quality, we consider the influence of spatial
resolution at coarse grids on the obtained results.

14



J. Phys. A: Math. Theor. 41 (2008) 344008 B J Geurts et al

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
50

100

150

200

250

300

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

E Reλ

S

t

tt

(a) (b)

(c)

Figure 3. Evolution of the total kinetic energy E , (a) the Taylor Reynolds number Reλ and (b) the
skewness S, (c) quantifying the effect of Helmholtz filtering the DNS data obtained at resolution
N3 with N = 512. The filtered DNS data were obtained with α = �/10 (solid), α = �/20
(dash), α = �/40 (dash-dot), α = �/80 (*), α = �/160 (), α = �/320 (+) and α = 0 (◦), and
subsequently injected on a grid of N3 with N = 128 after which the quantity was evaluated.

4.2.3. Grid-independent LES predictions. In figure 4 we collected the results of the grid-
independent LES predictions of the decay of the resolved kinetic energy, for all regularization
models introduced. These results can be directly compared to the filtered DNS data, which
are shown by the solid lines. For each value of α we note that the resolved kinetic energy is
overpredicted—the contribution of the sub-filter model to the decay of energy is insufficient.
This under-pins the observed small-scale variability in the solution seen in figure 1 and is
reminiscent of the Bardina sub-filter model [9, 31].

The results of the various models correspond quite closely to each other at very small and
at very large filter widths, albeit with very different implications. For small values of α, the
large-eddy predictions are close to the filtered DNS, primarily indicating that the sub-filter
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Figure 4. Decay of resolved kinetic energy obtained at N = 128. In (a) we show all cases
considered, in (b) we zoom in on the three cases with the smallest filter widths. Curves are labeled
as follows: filtered DNS (solid), Leray (dash), NS-α (dash-dot), modified Leray (dot) and simplified
Bardina (solid with *). Groups of curves correspond to α = �/320, �/160, �/80, �/40, �/20 and
α = �/10 from bottom to top. To distinguish the groups of curves the latter five were shifted (from
bottom to top) by 0.25, 0.5, 1, 1.5 and 2, respectively, in figure (a) and the latter two by 0.1 and
0.3, respectively, in figure (b).

models do not contribute much to the dynamics of the simulated flow. As the filter width
increases, we note that the different sub-filter models give quite different results. These follow
the main trend in the energy decay as long as � � �/32. The underprediction of the energy
decay-rate becomes more striking with increasing α; the modified Leray model can even lead
to a considerable increase of E for certain values of the filter width. The simplified Bardina
and the NS-α models give almost identical results in which the decay of E is seen to be very
small. The Leray model appears to represent at least some part of the desired energy decay,
even at quite large filter widths. At very large filter widths, all models are seen to lead to
simulations in which the resolved kinetic energy is almost constant. In this VLES regime, the
regularization models do not capture the energy decay-rate.

In figure 5 the corresponding predictions of the decay of the Taylor Reynolds number
and the skewness are collected, showing the dependence on the filter width for the individual
sub-filter models. Generally speaking, we observe similar trends as in figure 4, i.e., the
predictions become progressively less accurate with an increasing filter width. In the VLES
regime, all models are found to yield large errors. However, in the ‘LES regime’ where
� � O(�/16)−O(�/8) the primary flow features are captured properly with the regularization
models. Turning to the Taylor Reynolds number, we note that the filtered DNS results are
well approximated in case � � �/16. The predictions are found to be most accurate when the
Leray model is used, while the errors are most pronounced for the modified Leray model. At
large filter widths, particularly the simplified Bardina model displays strong deviations from
the filtered DNS results. The skewness is seen to be predicted accurately by the Leray model
for � � �/8. Here as well, we note that the modified Leray model yields rather large errors,
while the NS-α and simplified Bardina models give quite comparable results.
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Figure 5. Decay of the Taylor Reynolds number Reλ (a) and the skewness S (b) obtained at
N = 128. Curves are labeled as follows: filtered DNS (solid), Leray (dash), NS-α (dash-
dot), modified Leray (dot) and modified Bardina (solid with *). Groups of curves correspond to
α = �/320, �/160, �/80, �/40 and �/20 from bottom to top in (a) and also including �/10 in (b). To
distinguish the groups of curves the latter four were shifted (from bottom to top) by 50, 100, 150
and 200, respectively, in figure (a) and the latter five by 0.5, 1, 1.5, 2 and 2.5, respectively, in
figure (b).

4.2.4. Simulation errors at coarse resolutions. In LES-practice one quite often does not have
a proper grid-independent solution to the closed equations available [4, 54, 55]. It is therefore
of importance to investigate to what extent the numerical solution is altered when the grid is
coarsened. We illustrate this first for the Leray model at a variety of filter widths and then
consider all other sub-filter models at a particular filter width.

In figure 6, we display the influence of under-resolution on the decay of the kinetic
energy and the skewness. As may be expected, the effect of increasing the resolution is
largest in cases with a small filter width. For the kinetic energy we note that a nearly grid-
independent solution is obtained already at N = 32 if α = �/80, i.e., � ≈ �/16. At smaller
filter widths N = 64 is seen to be required, consistent with maintaining a suitable sub-filter
resolution [50].

The effect of spatial discretization errors is much stronger for the skewness, as this quantity
depends much more on small scales in the numerical solution. We note that the skewness
is not predicted accurately for any of the ‘LES-range’ filter widths � � �/8 if a grid with
N = 32 is adopted. The skewness clearly requires higher sub-filter resolutions to achieve grid-
independence. We note that the effect of spatial discretization errors is the dominant limitation
for the Leray model at coarse resolution. In practice, a balance needs to be found between
modeling errors, which become larger with an increasing filter width, and discretization errors,
which become smaller with increasing filter widths [56, 57]. A reasonable choice in this case
appears N = 64 at � ≈ O(�/16) − O(�/8). We infer a partial cancellation of modeling and
discretization errors for the skewness. For low values of α an increase in α is seen to lead to
a reduction of the integrated error, presumably since the discretization error is reduced, while
at large α a further increase in α implies an increase in this error, presumably because of a
continuing growth of the modeling error. This partial error-cancellation was also observed in
[49, 57].
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Figure 6. Decay of the resolved kinetic energy E (a) and the skewness S (b) using the Leray model
at spatial resolutions N = 128 (dash), N = 64 (dash-dot) and N = 32 (dot). Filtered DNS data
are shown as solid. Groups of curves correspond (from bottom to top) to α = �/320, �/160 and
�/80 in (a) and to α = �/320, �/160, �/80, �/40, �/20 and �/10 in (b). To distinguish the groups
of curves the latter two were shifted (from bottom to top) by 0.1 and 0.3, respectively, in figure (a)
and the latter five by 0.5, 1, 1.5, 2 and 2.5, respectively, in (b).
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Figure 7. Decay of the Taylor Reynolds number Reλ using the Leray model in (a) and the Leray,
NS-α, modified Leray and simplified Bardina models in (b), at spatial resolutions N = 128 (dash),
N = 64 (dash-dot) and N = 32 (dot). Filtered DNS data are shown as solid. Groups of curves
correspond to α = �/320, �/160 and �/80 from bottom to top in (a). To distinguish the groups of
curves the latter two were shifted by 50 and 100, respectively, in (a). In (b) we adopt α = �/160
and groups of curves correspond to Leray, NS-α, modified Leray and simplified Bardina from
bottom to top; the latter three were shifted by 50, 100 and 150, respectively.

The convergence toward the grid-independent Leray solution is also expressed clearly
in figure 7(a). A nearly grid-independent solution is obtained at N = 64 for � � �/16.
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Figure 8. The kinetic energy spectrum E (a), the energy-transfer spectrum T (b) and the power
spectrum 
 (c) at time t = 0 (◦), t = 0.25 (solid), t = 0.5 (dash) and t = 1 (dash-dot) using a
resolution N3 with N = 512.

Under-resolution as arises at N = 32 is particularly clear in the initial stages, and at small
filter widths. The results for the Leray model at � ≈ �/32 provide a point of reference for
assessing the influence of spatial discretization errors in the other sub-filter models. This is
shown in figure 7(b). Compared to the filtered DNS results, the Leray model provides the
most accurate results, and the lowest degree of sensitivity to under-resolution. The influence
of under-resolution is particularly strong for the NS-α and modified Leray models, as can be
seen from the results at N = 32.

In a pragmatic approach to LES [52], a direct minimization of the combination of sub-filter
modeling errors and spatial discretization errors was considered. In this way the deviation from
the filtered DNS findings could be minimized while keeping the computational costs low. This
approach yields an optimal filter width as a function of the spatial resolution, corresponding
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Figure 9. Evolution of the total dissipation rate ε at resolutions N3 with N = 32 (◦), N = 64
(), N = 128 (dash-dot), N = 256 (dash) and N = 512 (solid). In (a) we show ε versus t on a
doubly-logarithmic plot and in (b) a linear plot of ε versus t is shown.

to a lower overall simulation error. A drawback of this approach is that it requires detailed
reference results to be available. Moreover, the theoretical basis for this error-minimization
is unclear and the optimized simulation parameters are likely to be specific to the selected
flow conditions. Therefore, we will not pursue this here but investigate in more detail the
kinetic energy dynamics of the regularization models in the following section, to establish the
observed error behavior more clearly.

5. Regularized energy dynamics

In this section, we analyze the energy dynamics in the large-eddy simulations by considering
the energy spectrum E, the energy-transfer spectrum T and the power spectrum 
. This yields
an understanding of the spectral range of scales at which the dominant simulation errors occur
in the regularization models. We will also consider the dissipation rate ε, which is central to
the energy decay. The energy spectra for the NS-α model were studied earlier in [20, 25],
while spectra for the Leray model were presented in [12–14]. In two spatial dimensions this
problem was considered in [47, 53].

We first consider the reference DNS results and subsequently discuss the LES findings.

5.1. DNS predictions of spectral energy dynamics

In figure 8 we collected E, T and 
 at three instants of time. We note that the energy spectrum
in (a) shows a region with approximately k−5/3 behavior [29, 30], which is seen to decay self-
similarly. The energy-transfer spectrum in (b) shows a region of negative values at low k,
implying a strong flow of energy toward smaller scales. The somewhat irregular dependence
of T on k for small k, seen at t = 0.25 is due to the uncorrelated initial condition that was
adopted. At later times the k-dependence of the transfer spectrum is more regular, reflecting
the developed correlations in the turbulent flow. The power spectrum in (c) provides a further
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Figure 10. The kinetic energy spectrum E (a), the energy-transfer spectrum T (b) and the power
spectrum 
 (c) at time t = 0.5 quantifying the effect of Helmholtz filtering the DNS data obtained
at resolution N3 with N = 512. The filtered DNS data were obtained at α = �/10 (solid), �/20
(dash), �/40 (dash-dot), �/80 (*), �/160 (), �/320 (+) and 0 (◦), and subsequently injected onto
a grid of N3 with N = 128 after which the spectral quantity was evaluated.

characterization of the energy transfer in the flow. As time progresses, the wavenumber at
which 
 is maximal tends toward larger k values, i.e., smaller length-scales. At t = 0.5 there
appears a short range of wavenumbers at which 
 is approximately flat, indicating the extent
of the inertial range in this case.

The dissipation rate ε is given by

ε(t) =
∫ kmax

0

2k2

Re
E(k, t) dk. (47)

It is dominated by the smaller scales in the flow and will depend sensitively on the specific
regularization model that is adopted. In figure 9 we show the convergence of the dissipation
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Figure 11. The spectrum of kinetic energy at t = 0.5 and α = �/80 (a) and α = �/160 (b).
The unfiltered DNS spectrum is marked by ◦, filtered DNS spectrum (solid) and LES predictions
with Leray (dash), NS-α (dash-dot), modified Leray (dot) and simplified Bardina (*) at spatial
resolution N = 128.

rate as a function of the spatial resolution. In these simulations under-resolved DNS with
N ∈ {32, 64, 128, 256} were computed. We note an underestimation of ε during the initial
stages of development, in case N = 32 or 64, but near grid-independence is established for
N � 128. During the initial stages of the evolution the grid-independent dissipation-rate is
seen to decrease rapidly. This is followed by a short period of slower decrease of ε, roughly
between t = 0.2 and t = 0.5, which from t ≈ 0.5 onward displays a second regime of slightly
more rapid decrease in which ε depends approximately linearly on t. These stages are well
appreciated by comparing both the logarithmic and the linear plots of the data in figure 9. The
last stage in the developing flow is quite well captured even at the coarser resolutions.

The effect of explicit Helmholtz filtering on the spectra (E, T ,
) is summarized in
figure 10. We observe a gradual reduction of the energy spectrum with an increasing filter
width. As expected, this reduction is strongest for the smallest scales. Corresponding to
the filtering the energy transfer is less pronounced and thus, also the amplitude of the power
spectrum becomes smaller with an increasing filter width. This also leads to a shift to smaller
k of the location of maximal 
, i.e., fewer ‘donor’ modes transfer energy to a range of small
scales whose size increases with increasing �. We also considered the effect of filtering on the
dissipation rate. An increased filter width was found to strongly reduce ε and to slightly reduce
the time at which the first regime of algebraic decay transitions into the second stage of more
rapid decay. These reference data will next be used to assess the quality of the regularization
models.

5.2. LES predictions of energy dynamics

The predictions of (E, T ,
) as obtained with the regularization models will be presented next.
The energy spectra are shown in figure 11. Both at α = �/80 and α = �/160 all regularization
models predict spectra whose high-k tails are considerably above that of the filtered DNS. In
fact, the observed spectral tails are quite close to unfilterd DNS spectra. The Leray prediction
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Figure 12. Energy-transfer spectrum at t = 0.5 with α = �/80 (a) and α = �/160 (b) comparing
the unfiltered DNS data (◦) with the filtered DNS data (solid), and LES predictions with Leray
(dash), NS-α (dash-dot), modified Leray (dot) and simplified Bardina (*). In the insets the tail of
the spectrum is enlarged. Energy power spectrum at t = 0.5 with α = �/80 (c) and α = �/160
(d). A spatial resolution N = 128 was used.

is generally closest to the filtered DNS spectrum over a wide range of wavenumbers. In
contrast the modified Leray model yields a considerable overprediction, even compared to
unfiltered DNS, at a range of intermediate scales. After this ‘spectral bottleneck’ the modified
Leray model displays a much stronger decay of the tail of the spectrum. This very strong
reduction of the tail of the spectrum is also observed in the simplified Bardina model, while
the NS-α spectrum is generally similar in shape to the Leray model, albeit with more energy
in the smaller scales.

The regularization models’ results for the energy-transfer spectrum and the power
spectrum are collected in figure 12. The energy-transfer spectrum shows a complex
dependence on k. For the smaller as well as the larger k values, the Leray model is seen
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Figure 13. Evolution of the dissipation rate ε with α = �/80 (a) and α = �/160 (b) comparing the
unfiltered DNS data (◦) with the filtered DNS data (solid), and LES predictions with Leray (dash),
NS-α (dash-dot), modified Leray (dot) and simplified Bardina (*) at spatial resolution N = 128.

to compare quite well with the filtered DNS data. In contrast, the modified Leray model is
seen to generate too strong transfer of energy from the largest to the smaller scales and a
corresponding overestimate of T at the smaller scales. The simplified Bardina model displays
considerable deviations from the filtered DNS results in an intermediate range of scales and a
similar overprediction of T for the larger scales. As may be seen from the inset, at very large
k the simplified Bardina model does appear to follow the general behavior of T. This is not
the case for the NS-α model, which shows levels of the transfer spectrum comparable to or
even larger than arise in the unfiltered DNS. This behavior is more cleanly expressed by the
power spectrum. Here, it is much more clear that the Leray model is closest to the filtered
DNS results, both at α = �/160 and α = �/80. The other regularization models display too
strong overall energy transfer to smaller scales, even stronger than in the unfiltered DNS, in
most cases. This is particularly pronounced for the modified Leray model, and underlines
the observed fragmented impression of flow structures in snapshots of the numerical solution
(cf figure 1). The overprediction of 
 due to the NS-α is also readily observed and correlates
well with the observed overestimated variability of the small scales in figure 1.

Finally, we consider the dissipation rate. In figure 13, we compare the observed dissipation
rates in the regularization models with the filtered and unfiltered DNS results. The considerable
underestimation of the dissipation rate by each of these sub-filter models is readily appreciated.
The Leray model is seen to provide the highest levels of dissipation, but nevertheless much
too low and with a time-dependence that does not reflect the DNS findings well. The
other regularization models yield even lower levels of dissipation during most of the flow
development. Moreover, these models first show a minimal ε at t ≈ 1/10 after which the
dissipation rate increases. At α = �/80 we note that the modified Leray model gives rise
to particularly low dissipation rates around t = 0.15, which reflects the very fragmented
flow-structuring seen in figure 1. The fact that both the shape as a function of time and
the level of ε are incorrectly represented by all regularization models is at the heart of the
(slight) overestimation of the small-scale variability. This motivates further developments of
regularization models in the future.
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Figure 14. The spectrum of kinetic energy (a) and the energy power spectrum (b) at t = 0.5
and α = �/160 comparing the unfiltered DNS data (◦) with the filtered DNS data (solid), and
LES predictions with Leray (dash) and modified Leray (dashdot) at spatial resolutions N = 32,

64 and 128.

All findings presented in this subsection were obtained at a high spatial resolution of
N = 128. As observed before, an under-resolution of the small scales can lead to additional
numerical effects. These are illustrated for the energy spectrum and the power spectrum in
figure 14. Indeed, we observe considerable deviations in the results when the resolution is too
low. However, the final conclusions regarding the suitability of the Leray and the modified
Leray models can be inferred even on the basis of the coarser grids. The Leray predictions
are quite close to the DNS findings while the modified Leray model induces far too many
small scales in the solution. Under-resolution at N = 32 displays an overestimated 
 for both
models. An increased resolution does produce a clear convergence for Leray and slightly less
satisfactory for the modified Leray model.

6. Concluding remarks

In this paper, we studied the use of regularization models for the large-eddy prediction of
homogeneous decaying isotropic turbulence. This flow was treated on the basis of the pseudo-
spectral discretization method, at flow conditions that allow a well-resolved direct numerical
simulation at O(108) grid points. Hence, a clear point of reference for assessing the various
regularization models was obtained. However, this DNS option by itself is of little practical
use in view of the required computational costs. The new coarsened flow description based on
the direct regularization of the convective nonlinearities in the Navier–Stokes equations was
considered and tested instead.

An elegant aspect of the regularization approach is that it provides a systematic method
for deriving a closure for the coarsened flow description from an assumed dynamic principle
[11, 12, 17]. In addition, rigorous mathematical results are available that establish existence,
uniqueness and regularity of the solution to the modeled large-eddy equations. Four examples
were included in this paper, i.e., the Leray model, the NS-α model, the modified Leray model
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and the simplified Bardina model. This study focused on the quality of these regularization
principles as sub-filter models for turbulence. We distinguished between grid-independent
solutions to the regularized equations, to assess the capturing of the primary turbulent flow
features, and solutions obtained at marginal sub-filter resolution �/h, to assess the accuracy
of these models under more realistic LES resolution conditions.

The regularization models were compared against the filtered DNS results over a wide
range of filter widths �, using the Helmholtz filter. Each of these models was found to yield
considerable errors in the predictions in the case of very large filter widths, i.e., in cases where
�/� � 1/4, where � is the computational box-size. Conversely, all regularization models
were found to yield accurate predictions in cases with small filter widths, i.e., �/� � 1/64.
In these simulations, the contribution of the sub-filter model was very limited and the results
for a variety of flow properties were quite similar to those found without the sub-filter model.

The main interest for regularization models is in the regime in which 1/32 � �/� � 1/8.
In this range of filter widths, the contribution of the sub-filter model to the total flux is
considerable as is the saving of computational effort. The detailed assessment of the
regularization models discussed in this paper was based on the total energy, the Taylor
Reynolds number and the velocity skewness. Generally speaking, the Leray model provides
quite accurate approximations in this range of filter widths, compared to the filtered DNS
findings. The modified Leray model was found to yield rather large errors, expressed by a
too strong presence of the smaller scales in the modeled flow. The simplified Bardina and
NS-α models we found yield results that were in most cases quite comparable to each other,
but at a larger error than the Leray model. All models were found to underestimate the initial
dissipation rate, leading to an overprediction of the resolved turbulent kinetic energy and the
tail of the energy spectrum.

From these observations we may make a proposal for the maximal ratio between the
filter width � and the Kolmogorov length-scale η for which the grid-independent solutions
to the regularization models give a good correlation with the filtered DNS solution. For the
simulation with the initial Taylor Reynolds number Reλ = 100 we observed that η/� evolves
from an initial value of about 2 × 10−3 to a value of about 3 × 10−3 at t = 1. From flow
impressions as in figure 1 and the quantitative analysis in the previous two sections, we may
infer that as long as 1/16 � �/� � 1/8 the general correspondence between the Leray and
NS-α models on the one hand, and filtered DNS on the other hand, is quite acceptable. This
implies ratios 20 � �/η � 60. For �/η � 20 the quantitative agreement with filtered DNS
is generally quite close for the Leray, NS-α and simplified Bardina models. For the less
restrictive bound �/η � 60 the agreement is more qualitative, with the Leray model as the
more accurate option.

These ‘physical’ resolution requirements also illustrate the potential gain in computing
time that is achievable with regularization models. Adhering to an LES resolution of two
grid-cells per � [50, 56] and a DNS resolution of one grid-cell per η [43–45], we may hence
estimate

NLES

NDNS
= 1/hLES

1/hDNS
= 2

η

�
(48)

which implies for the ratio of grid-points: 4 × 10−5 � 8(η/�)3 � 1 × 10−3. The most
conservative estimate, which also provides accurate predictions, hence implies a saving of a
factor of 1000 in memory. Factoring in the increased time-step, the total computational effort
scales as (NLES/NDNS)

4 [50, 58], implying at least a factor of 104 faster simulations. This
estimate increases to a factor of 8×105 in the most progressive estimate. In actual simulations
reported in this paper, computing times for a full DNS at a resolution of 5123 are on the order of
160 h on 16 CPUs. Given the measured speed-up of the code, this amounts to an equivalent of
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about 2400 h, i.e., 100 days, on a single CPU (corresponding to an SGI Altix 3700 machine).
A large-eddy simulation employing a regularization model at a coarsening of �/η = 20,
would imply an LES grid-spacing of hLES = 10hDNS, i.e., a resolution of about 503. Since
a simulation at a resolution of 323 requires about 2 min, and at 643 approximately half an
hour, this corresponds to a factor between 5000 and 75 000 savings. Turning to the coarser
option �/η = 60 we infer hLES = 30hDNS, i.e., a resolution of 173, bringing the saving in the
range 75 000 to 1 × 106 at this instance. Hence, a huge saving in computational costs may be
realized, without compromising the general turbulence structures and quantitative predictions
too much.

With the grid-independent solution as the point of reference, it is of interest to investigate
the extent with which the solution deteriorates if the resolution is decreased. In case the spatial
resolution was lowered from N = 128 to N = 64 or even N = 32 the quality of (some of)
the predictions was considerably affected. In particular, the modified Leray model was shown
to yield solutions with a strong overestimation of the smaller scales and consequently, less
accurate representation of the energy dynamics and statistical flow properties. In contrast,
the Leray model was found to yield the most acceptable sensitivity levels while the solution
obtained with either the simplified Bardina and NS-α models yielded considerably deteriorated
accuracy levels upon coarsening.

The mathematical elegance of regularization models has important advantages in case
consistent models of small-scale turbulence are developed. In particular, when turbulence is
further complicated through interactions with other mechanisms, e.g., combustion, rotation,
stratification or large ensembles of particles, it is essential that the sub-filter modeling is
obtained from a systematic framework. Presently available regularization models such as
the Leray and the NS-α models were shown to underestimate the decay of turbulent kinetic
energy in homogeneous decaying isotropic turbulence. Hence, it is still an open challenge
to formulate a regularization principle from which a sub-filter model can be derived that
represents the decay of energy in closer agreement with the filtered DNS findings. This is the
subject of ongoing research.
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